

NSDF Software Development Life Cycle Procedures

Documents

	Introduction
	Software checklist

	Programming languages and conventions
	C/C++

	Python

	Go

	JavaScript

	Awesome List

	Links/Bibliography

	Continuous Integration
	Version control

	Git branches

	Git workflows

	Semantic Versioning

	Code reviews

	Links/Bibliography

	Continuous Delivery and Deployment
	Cloud Deployment

	Artifacts Repositories

	Deployment staging

	Docker Containerization

	Kubernetes Orchestration

	High-Performance Computing Deployment

	Links/Bibliography

	Continuous Testing
	Test-driven development

	Unit testing and frameworks
	Mocking

	Unit testing frameworks

	C++ Unit testing

	Python Unit testing

	Go Unit Testing

	Other tests

	Code Analysis
	C++ Code Analysis

	Python Code Analysis

	Links/Bibliography

	Continuous Documentation
	Markdown

	Documentation as Code

	Code as Documentation
	Use intention-revealing names

	Refactor long blocks

	Use informative comments

	Use class-level documentation

	Use method-level documentation

	Use proper formatting

	Use error handling

	C++ Documentation

	Python Documentation

	Jupyter Notebooks Documentation

	Web Services API Documentation
	Representational State Transfer (RESTful) API

	RESTful documentation

	Links/Bibliography

	Continuous Monitoring
	Kubernetes monitoring
	Container Advisor, Prometheus, Grafana

	ElasticSearch, Logstash, Kibana

	Other K8s monitoring/Logging solutions

	Links/Bibliography

	Software Security
	Enforce Security of sensitive data

	Enforce Security of Continuous Integration

	Enforce Security of Continuous Deployment

	Security Scans

	Automatic tools

	Links/Bibliography

	Software Quality
	Reliability

	Efficiency

	Security

	Maintainability

	Rate of Delivery

	Automatic Tools

	Links/Bibliography

	Appendix I. Git Workflows
	Centralized Workflow

	Feature Branching Workflow

	Gitflow Workflow

	Forking Workflow

	GitHub Flow

 [image:]

Introduction

The scope of this document is to create and document guidelines, norms, and procedures for the software engineering aspects of development, evolution, and long-term operation of the NSDF software stack, in particular regarding::

	Use of repositories, branching, and versioning methodologies

	Use of programming languages and frameworks

	System and code documentation, and their continued sustainment

	Style guidelines for user interfaces, code construction

	Code review procedures

	Deployment staging procedures

	Test requirements: Unit, Regression, Integration, and Top-level validation approaches

	Development project methodologies (e.g. agile practices)

	Continuous integration and deployment (CI/CD) practices

	Package management practices

	Container management practices

	Change management recommendations

Authors in alphabetical order:

	Name

	Email

	Daniel Balouek

	daniel.balouek@utah.edu

	Kevin Coakley

	kcoakley@ucsd.edu

	Jakob Luettgau

	jluettga@utk.edu

	Paula Olaya

	polaya@vols.utk.edu

	Giorgio Scorzelli

	scrgiorgio@gmail.com

	Glenn Tarcea

	gtarcea@umich.edu

	Naweiluo Zhou

	naweiluo.zhou@utk.edu

This is a guide to software development at the NSDF. It both serves as a source of information for exactly how NSDF works, and as a basis for discussions and reaching consensus about how to_ develop software_.

A Software Development Life Cycle (SDLC) is a methodology followed to create high-quality software. By adhering to a standard set of tools, processes, and duties, a software development team can build, design, and develop products that meet or exceed their clients’ expectations.

[image:]

Source: https://brocoders.com/blog/agile-software-development-life-cycle

The most famous SDLC models are:

	Waterfall [https://en.wikipedia.org/wiki/Waterfall_model]: Follows a sequential model of phases, each of which has its tasks and objectives

	Cleanroom [https://en.wikipedia.org/wiki/Cleanroom_software_engineering]: A process model that removes defects before they cause serious issues

	Incremental [https://en.wikipedia.org/wiki/Incremental_build_model]: Requirements are divided into multiple standalone modules

	V-Model [https://en.wikipedia.org/wiki/V-Model]: Processes are executed sequentially in a V-shape i.e. each step comes with its testing phase

	Prototype [https://en.wikipedia.org/wiki/Prototype-based_programming]: A working replication of the product is used to evaluate developer proposals

	Big Bang [https://www.tutorialscampus.com/sdlc/big-bang-model.htm]: Requires very little planning and has no formal procedures; however, it’s a high-risk model

	Agile [https://en.wikipedia.org/wiki/Agile_software_development]: Uses cyclical, iterative progression to produce working software

This document specifies the software development procedures for the NSDF project and includes all development procedures between high-level requirements and either software release or the initiation of a DevOps deployment process.

Software checklist

In this section, we provide a short checklist for software projects, and the rest of this document elaborates on the various points in this list.

The bare minimum that every NSDF software project should do is:

	choose and include an open-source license

	use version control to enable collaborative developing

	use a publicly accessible version-controlled repository

	add a README.md file describing the project. This file is targeted towards developers. Keeping basic documentation in README.md can be useful for other developers to track steps and design decisions. Therefore it is convenient to create it from the beginning of the project when initializing a git repository.

NSDF also recommends doing the following, from the start of the project:

	use code quality tools

	use testing

	use standards (protocols, conventions, tools, etc.)

	Release user and development documentation

	Provide issue trackers

	Make the software citable adding a DOI

	Release the software to a public registry

	Add a public channel for communication

	Implement and add a code of conduct

	A code of conduct defines standards for how to engage in a community.

	It signals an inclusive environment that respects all contributions.

	It also outlines procedures for addressing problems between members of your project’s community.

	See https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/adding-a-code-of-conduct-to-your-project

	Add a contribution guideline document.

Programming languages and conventions

From the beginning of the project, a decision on the code style has to be made and then should be documented.

Not having a documented code style will highly increase the chance of inconsistent style across the codebase, even when only one developer writes code.

The NSDF should have a sane suggestion of coding style for each programming language we use. Coding styles are about consistency and making a choice, and not so much about the superiority of one style over the other

If your programming language supports namespaces, use nsdf.* to clarify the origin of the software.

NSDF wants to limit the development to a few core languages and frameworks.

At the NSDF we prefer C++, Python, Go, and JavaScript.

C/C++

C/C++ is the NSDF programming language for fast and core services such as the visualization and low-level storage of multi-resolution data.

NSDF C/C++ environment is built on:

	C++ version: C++11 or C++17

	Visual Studio for Windows, gcc/clang on other platforms

	Code style: CppCoreGuidelines [https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md]

	Minimal self-contained dependencies (e.g. STL, boost, etc.)

	Cross-platform make tool: CMake

Libraries:

	Open MPI [https://www.open-mpi.org/] . to enable parallelism

	Boost C++ [https://www.boost.org/]is a popular collection of peer-reviewed, free, open-source C++ libraries.

	Code is generally very high-quality, is widely portable, and fills many important gaps in the C++ standard library, such as type traits and better binders.

	Maybe can hamper readability excessively “functional” style of programming

	JSON for Modern C++ [https://nlohmann.github.io/json/]

	hdf5-cpp [https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse] : The popular HDF5 binary format C++ interface.

	ZeroMQ [https://zeromq.org/]: lower level flexible communication library with a unified interface for message passing between threads and processes, but also between separate machines via TCP.

Python

Python is the NSDF dynamic language of choice.

We use it for data analysis and data science projects using the SciPy stack and Jupyter notebooks, and for many other types of projects: workflow management, visualization, web-based tools, etc.. It is not the language of maximum performance, although in many cases performance-critical components can be easily replaced by modules written in faster, compiled languages like C/C++ or CPython.

Python is very flexible and the most used programming language for scientific applications: a large number of useful frameworks and libraries are written in Python. Python allows easy integration with low-level bindings (e.g., C/C++) if efficiency is critical.

NSDF Python environment is built on:

	Python 3.7+

	Web applications: Django [https://www.djangoproject.com/], Flask [https://flask.palletsprojects.com/en/2.0.x/]

	Packaging: PiPy, Manager: pip (would avoid conda when possible)

	Other services: Tornado [https://www.tornadoweb.org/]

	Templating: Jinja [https://jinja.palletsprojects.com/]

	Code style: [https://github.com/airbnb/javascript]PEP 8 [https://www.python.org/dev/peps/pep-0008/]

Notebooks:

	Client-side: Jupyter Notebook [https://jupyter.org/]

	Server-side: JupyterLab [https://jupyterlab.readthedocs.io/en/stable/]

IDE:

	JetBrains PyCharm [https://www.jetbrains.com/pycharm/]

Core scientific packages:

	NumPy [https://numpy.org/]

	https://scipy.org/

	Pandas [https://pandas.pydata.org/]

	Scikit-learn [https://scikit-learn.org/stable/]

	Dask [https://dask.org/]

Visualization packages

	Matplotlib [https://matplotlib.org/]. the standard in scientific visualization. It supports plotting through the pyplot submodule. It is highly customizable and runs natively on many platforms, making it compatible with all major OSes and environments. It supports most sources of data, including native Python objects, NumPy, and Pandas.

	Seaborn [http://seaborn.pydata.org/index.html] is a Python visualization library based on Matplotlib and aimed towards statistical analysis. It supports NumPy, pandas, scipy, and statmodels.

	bokeh [https://github.com/bokeh/bokeh] is Interactive Web Plotting for Python.

	Plotly [https://plotly.com/] is a platform for interactive plotting through a web browser, including in Jupyter notebooks.

Parallelization packages:

	The multiprocessing [https://docs.python.org/3/library/multiprocessing.html]module is the standard way to do parallel executions in one or multiple machines, it circumvents the GIL by creating multiple Python processes.

	in Python 3 is the concurrent.futures [https://docs.python.org/3/library/concurrent.futures.html] module

	See Using IPython for parallel computing [https://ipython.org/ipython-doc/3/parallel/]

Go

Go is a statically typed, compiled programming language that is open-sourced and maintained by Google. Go uses a garbage collector to handle memory leaks.

Go is very fast and mostly used for server-side applications.

NSDF Go environment is built on:

	Go 1.17+ (Recommend upgrading to the latest version whenever it becomes available. Versions are backward compatible. Version 1.18 will release “generics” for Go)

	Code style: The Go community has standardized around the “go fmt” tool. All code should be run through the “go fmt“ tool to properly format it.

	Dependencies Management: Use Go Modules for dependencies management.

	Builds: Even though Go has a toolchain for builds it is recommended that a Makefile be created to hide the options.

	Background “Daemon” processes: This is an area it is too easy to get wrong. Instead, use supervisord to handle background processes.

	Web services: There are many different web service frameworks available. I’ve standardized on using Echo (echo.labstack.com). It has less boilerplate than the standard library and decent documentation.

	Databases: Go has a standard DB library. I recommend using either the “sqlx“ package or gorm. I expect once Go 1.18 is released that many of the packages that currently rely on reflection will see a lot of changes.

JavaScript

JavaScript is the programming language for the World Wide Web, alongside HTML and CSS. All web browsers have a dedicated JavaScript engine to execute the code on users’ devices.

On the server side, there is Node.js, an open-source cross-platform JavaScript runtime environment with an event-driven architecture capable of asynchronous I/O.

NSDF JavaScript environment is built on:

	ECMAScript 6

	Packaging: NPM [https://www.npmjs.com/], Resolver: Yarn (faster)/npm

	Cross-compiler: Babel [https://babeljs.io/]

	Code style: Airbnb [https://github.com/airbnb/javascript]

	MVC/SPA Clientside frameworks: React [https://reactjs.org/], Angular [https://angular.io/], Vue [https://vuejs.org/]

	Angular is an application framework by Google written in TypeScript.

	React is a library that can be used to create interactive User Interfaces by combining components. It is developed by Facebook.

	Vue.js is an open-source JavaScript framework for building user interfaces.

Security Considerations:

	XSS

Awesome List

On GitHub, there is a concept of an _awesome list, that collects awesome libraries and tools on some topic. For instance, here is a subset:

	Python: https://github.com/vinta/awesome-python

	C++ https://github.com/fffaraz/awesome-cpp

	Go https://github.com/avelino/awesome-go

Links/Bibliography

List:

	README.md template · GitHub [https://gist.github.com/jxson/1784669]

	The art of ReadMe [https://github.com/hackergrrl/art-of-readme/blob/master/README.md]

​

 [image:]

Continuous Integration

Overview of section contents:

	Section

	Description

	Version control

	standards to use Git to enable code version control for public and private repository

	Git branches

	different Git branches of the same project to enable multiple developments in parallel

	Git workflows

	NSDF recommends GitHub Flow for the complex repositories and Git Flow for all other cases.

	Semantic Versioning

	Industry standards to name software versions

	Code reviews

	standardization of code review to improve software quality

In 1994, the term “Continuous Integration” (CI) was introduced by American software engineer Grady Booch, who is best known for developing the Unified Modeling Language (UML) but also for his innovative work in software architecture and collaborative developer environments.

Continuous integration has been regularly employed since 1997 and is now widely accepted as the best practice for software development. Although the process of continuous integration may look a bit different today than it did 20 years ago, the theory behind it nonetheless remains the same.

Continuous integration is the practice of continuously integrating code changes from different developers working on the same code into a single software project. This integration is an ongoing and continuous process to ensure that all changes are properly recorded. This strategy is an essential part of an Agile Software Development System, which is built around the concept of collaboration, designing for scale, and building sustainability.

[image:]

Continuous pipeline

Continuous Integration / Continuous Delivery (described in the following section) is an eight-step, agile process that ensures fast, effective, and stable software development.

	Plan: Changes to the application are planned by the product team. This could include bug fixes, performance enhancements, or new features to be added to the application.

	Code: The developers code the software on their local machines. Each developer has a specific part of the system to develop or a bug to resolve.

	Build: the new code is submitted to the code repository and the application is compiled.

	Test: tests check the functionality and usability of the code. Automated testing is used to ensure that the new code doesn’t interfere with other parts of the package.

	Release: the code is merged and can be set to an automated release, pending approval.

	Deploy: The code is automatically deployed to production.

	Operate: the new code can be operated within the production environment.

	Monitor: Application performance is continually monitored to find bugs and identify performance problems.

Continuous integration will help NSDF to ensure:

	Time savings: it removes any double-up on tasks, automating testing and merging processes

	A more robust product: regular testing implies fewer bugs and fixes.

	Increased communication: code sharing increases the speed and efficiency of communication

	Faster software releases: changes can be fixed, tested and rolled out in tight timeframes.

	Limit integration conflicts: regular updates minimize potential conflicts; problems can be quickly identified

	Modular code: _facilitate the development of _less complex code

Version control

Version Control enables developers to keep track of the revisions in software development projects and allows them to work together on those projects.

Version control makes it easier to work on the same code simultaneously, while everyone still has a well-defined version of the software.

Also, Version Control makes it easier to integrate with other software that supports modern software development, such as testing (continuous integration, automatically run tests, build documentation, check code style, integration with bug-tracker, code review infrastructure, comment on code, etc.).

NSDF repositories should preferably be public from the start; but we tolerate private repositories, to be switched to a public status when they reach a certain level of curation.

To prevent private repositories from remaining unnecessarily private forever please add a brief statement in the README of your repository, clarifying:

	Why is this repository private?

	On which date can this repository be made public?

	Who should be consulted if we would like to make the repository public in the future?

The official NSDF repository is https://github.com/nsdf-fabric

NSDF recommends the use of Git (versus CVS, Apache Subversion, Mercurial, etc.) since it has a lot of improvements over its competitors, and it’s perfect for NSDF distributed projects. Github provides a way to communicate in a more structured way, such as in code reviews, commits, and issues.

One downside of Git is that it can be sometimes difficult to explain to a non-expert, and there is likely to be a slow down in production as programmers adapt to it. But, once it is learned, the whole software cycle speed will increase.

To give proper push /pull permissions on NSDF repositories (ref. https://github.com/nsdf-fabric), we recommend adding a new SSH key for each user, to avoid typing passwords repeatedly. The procedure is just a few-minutes time consuming (ref Adding a new SSH key to your GitHub account [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account]) and it consists of:

	Generate a new SSH key (or recycle an existing one)

	enter the “GitHub settings“ section and select “SSH and GPG keys”

	paste the SSH

In creating a new NSDF repository some suggestions are:

	include a .gitignore file

	Add a README.md file explaining what the project does, why it is useful, how users can get started, how users can help, and who maintains/contributes to the project

	Add a LICENSE file. It tells others if and how they can use, change, or distribute your software. It protects both sides from legal troubles. The license should be included in a LICENSE file at the root of the project directory as per standard practice.

	See https://choosealicense.com/ for deciding what license.

	be careful to commit messages: they are the way for other developers to understand changes in the codebase. It is very important to explain the why behind implementation choices.

[image:]

Comparison of licenses

Each source file of any NSDF software should start with the following copyright statement at the top :

Copyright NSDF and Licensed under the XXX License, version YYYY.
See LICENSE for details.

The same notice should be somewhere in your README file, which should also contain an overview of dependencies and which licenses they are under.

We also suggest the creation of DOIs for all NSDF software. Software citation is important as scientific research becomes more open and more digital. Advantages to making software citable include:

	Gives credit to the software developers

	Supports scientific transparency

	Improves reproducibility of research that relies on the software

	Helps the community by enabling reuse of your code and methods

	Supports FAIR software principles

NSDF software should contain sufficient information for others to be able to cite its software, such as authors, title, version, and DOI.

GitHub has default integration with Zenodo by CERN. Any time a new release is made, the repository will be automatically archived and issued a new DOI by Zenodo. From this article [https://zenodo.org/record/45042/files/MakingCodeCitableWithZenodoAndGitHub_SoftwareSustainabilityInstitute.pdf?download=1]:

For Open Science, it is important to cite the software you use in your research. Particularly, you should cite any software that made a significant or unique impact on your work. Modern research relies heavily on computerized data analysis, and we should elevate its standing to a core research activity with data and software as prime research artifacts. Steps must be taken to preserve and cite software in a sustainable, identifiable, and simple way. This is how digital repositories like Zenodo can help.

Git branches

In Git, branches are a part of your everyday development process.

Git branches are effectively a pointer to a snapshot of changes. When there is a new feature or bug fixing, the developer creates a new branch to encapsulate the changes.

This simple process makes it harder for unstable code to get merged into the main code base and encourages the cleaning up before merging into the main branch.

[image:]

Example of Git branching

As an example, in the above figure, two isolated lines of development are shown:

	one purple line: the new branch is created for developing a “little” feature

	one green line: the new branch is created for a longer-running “big” feature

	meanwhile, the main branch is unaffected

By developing the new features in branches, the work can proceed in parallel, keeping also the main branch isolated from still-in-development (and possibly buggy) code.

Git workflows

When working on a Git-managed project, we need to make sure the team agrees on what workflow to adopt i.e. how the flow of changes will be applied.

A Git Workflow is a recipe or recommendation for how to use Git to accomplish work consistently and productively. Given Git’s focus on flexibility, there is no standardized way to interact with Git.

For a full discussion on workflows, advantages and cons, please read “Appendix I. Git Workflows”.

NSDF recommends GitHub Flow for its more complex repositories and Git Flow for all other cases.

Semantic Versioning

Semantic Versioning is the most accepted and used way to add numbers to software versions. It is a way of communicating the impact of changes in the software on users.

Semantic versioning is an industry-standard for software versioning. The overall idea is that given a version number “major.minor.patch“, we will increment the:

	MAJOR version when there are breaking/incompatible API changes

	MINOR version when there is added functionality/features in a backward-compatible manner

	PATCH version when there are backward-compatible bug fixes

[image:]

Major version zero 0.y.z is for initial development. Anything may change at any time. The public API should not be considered stable.

Version 1.0.0 defines the first public API.

Prerelease information may be appended, separated by a dash.

The prereleases can be versioned too (eg. 1.2.3-beta.1, 1.2.3-beta.2, etc). Typical prerelease stages include:

	alpha: internal testing, may not be feature-complete

	beta: external testing, should be feature complete

	release candidate (RC): this code will be shipped unless bugs are found

Code reviews

At the NSDF, we value software quality.

Higher quality software has fewer defects, better security, and better performance, which leads to users who can work more effectively.

Code reviews are an effective method for improving software quality. Code reviews are used to ensure consistency and quality across a project. They are a key aspect of the success of any development team.

Code review also improves the development process. By reviewing new additions for quality, less technical debt is accumulated, which helps the long-term maintainability of the code. Reviewing lets developers learn from each other and spreads the knowledge of the code around the team. It is also a good means of getting new developers up to speed.

Code reviews are effective because they put a double control on the code, and force authors to explain their purposes in clear language. It will be less probable to commit overly-complicated code: if the reviewer is not able to understand it, he will refuse the _pull request _asking for clarifications.

This is also the reason why code reviews are also an incredible ource of frustration \and delays.

In this 2021 DevOps Survey [https://about.gitlab.com/developer-survey/] code quality was one of the top reasons to choose DevOps, but, at the same time, code reviews were one of the top four pain points (with testing, planning, and code development.

The main purpose of a code review is to find issues or defects in a piece of code. These issues then need to be communicated back to the developer who proposed the change, so that they can be fixed. The goal of a code review is not to provide criticism of a piece of code, or even worse, the person who wrote it. The goal is to help create an improved version.

NSDF recommends that every change must be reviewed, and every change must be approved.

The NSDF reviewers should look at (copying from Google Code Review Developer Guide [https://docs.google.com/document/d/1hEtI6l4JkDwqBff2XBIb8pbr4Iv2PV8X/edit?rtpof=true]):

	What

	Description

	Design

	The overall design of the code should make sense within the code base and integrate well with the system

	Functionality

	The code must meet the needs of the user story and should consider edge cases too.

	Complexity

	The code must not be too complex. Pieces of evidence of overcomplexities are: “code can’t be understood quickly” or “developers are likely to introduce bugs when trying to modify the code”. Also, the code must not be over-engineered i.e. it is trying to solve preemptively non-existent problems.

	Naming

	Code must use clear names for variables, classes, methods.

	Tests

	Code must include unit tests and other types of tests as appropriate. Tests must be correct, concise, useful, sensible, and cover an acceptable amount of the code.

	Comments

	The code must be commended adequately and comments must not be verbose.

	Style

	The code must follow project style guidelines i.e. it must be consistent with the surrounding code.

	Documentation

	In case of significant changes, the documentation must be updated as well.

Major problems regarding code reviews are:

	Code reviews are impersonal: they are almost always conducted via _online text _communications. This can result in communications challenges: developers could be _protective _of their work, and some comments can be perceived as offensive

	code reviews can become sometimes too a nitpicking process, causing frustration

	code reviews could take too long resulting in a general slowdown of the development

	Code reviews are highly subjective, based on the assigned reviewers.

	

[image:]

Source Dane Morgridge codemonkeykungfu.com

To solve these problems NSDF recommends some best practices:

	convert problematic code reviews to be on-person or on conference-call

	24/48 hours is the maximum time a code review should take. And the author’s response to observations should be fast as well

	as accept an _almost-perfect _code review and ask the author to do the minor fixes subsequently.

	don’t send large code reviews

	do not mix changes belonging to different problems.

	In case of emergencies (like a demo, deadlines, etc) some rules can be _relaxed. _Keep track of this relaxation by creating an ad-hoc branch

	use courtesy when reviewing code and providing guidance. This is a process built on mutual respect, and is not intended to shame people or negatively express dissatisfaction (citing Microsoft guidelines “Don’t criticize the submitter, point out flaws in the code”).

	integrate code reviews in the CI pipeline (e.g. “Git pull requests”) to keep the history

Links/Bibliography

List:

	https://www.tibco.com/reference-center/what-is-continuous-integration

	Git Branch | Atlassian Git Tutorial [https://www.atlassian.com/git/tutorials/using-branches]

	Comparing workflows - Atlassian Git Tutorial [https://www.atlassian.com/git/tutorials/comparing-workflows]

	The Best Branching Strategies For High-Velocity Development [https://www.perforce.com/blog/vcs/best-branching-strategies-high-velocity-development]

	Gitflow workflow vs Feature Branch workflow [https://medium.com/medvine/gitflow-workflow-vs-feature-branch-workflow-8fb4c26571c5]

	Using Gitflow with the GitHub Fork & Pull Model [https://www.dalescott.net/using-gitflow-with-githubs-fork-pull-model/]

	What are GitLab Flow best practices? [https://about.gitlab.com/topics/version-control/what-are-gitlab-flow-best-practices/]

	Semantic Versioning [https://semver.org/] 2.0.0

	Google Code Review Developer Guide [https://docs.google.com/document/d/1hEtI6l4JkDwqBff2XBIb8pbr4Iv2PV8X?rtpof=true&authuser=scrgiorgio%40gmail.com&usp=drive_fs]

	How We Do Code Review (Microsoft) [https://devblogs.microsoft.com/appcenter/how-the-visual-studio-mobile-center-team-does-code-review/]

	I’ve code reviewed over 750 pull requests at Amazon [https://curtiseinsmann.medium.com/ive-code-reviewed-over-750-pull-requests-at-amazon-here-s-my-exact-thought-process-cec7c942a3a4]

	Google Code Review Developer Guide [https://sci-visus.slite.com/app/channels/uKa9w4MB0C/notes/ZMBNTA3qc]

	Code Review Best Practices. [https://levelup.gitconnected.com/code-review-best-practices-cf6f4bfeeb3e]

	Designing a rubric for feedback on code quality in programming courses | Proceedings of the 16th Koli Calling International Conference on Computing Education Research [https://dl.acm.org/doi/10.1145/2999541.2999555]

	Why code review beats testing: evidence from decades of programming research | Kevin Burke [https://kevin.burke.dev/kevin/the-best-ways-to-find-bugs-in-your-code/]

	Best Practices for Code Review | SmartBear [https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/]

	Code Reviews: Just Do It [https://blog.codinghorror.com/code-reviews-just-do-it/]

 [image:]

Continuous Delivery and Deployment

Overview of section contents:

	Section

	Descroption

	Cloud deployment

	The container as service is favored in NSDF

	Artifacts Repositories

	NSDF adopts the most widely-used channels to share NSDF artifacts based on C/C++, Python, Docker, and Kubernetes.

	Deployment staging

	Helm to provide development staging environment for internal usage

	Docker Containerization

	NSDF suggests using Docker as the standard containerization tool and UDocker as an alternative funder certain special situations

	Kubernetes Orchestration

	Orchestration workflow

	HPC deployment

	Recommendation of container engines for HPC

Continuous Deployment (CD) is a software development discipline where _software is built in such a way that it can be released to production at any time and minimize the time between production iterations (see https://martinfowler.com/bliki/ContinuousDelivery.html)

In literature there is usually a clear distinction between the delivery and the deployment phase:

	Continuous Delivery means that artifacts are built and made ready to be deployed. But they will not be deployed without a manual decision by a human being.

	Continuous Deployment implies all processes are automated, and a single commit triggers an automated pipeline that will eventually bring a new version of your application to the production environment without any human intervention

[image:]

Continuous integration vs. continuous delivery vs. continuous deployment (source Atlassian CI/CD)

While many companies practice Continuous Delivery, few embrace Continuous Deployment because it’s riskier: anyone could introduce a bug into production with a simple commit, and there is the need to introduce additional processes to reduce this risk.

Automation is a key driver of productivity in CD. A battery of automated tests must be programmed to verify that new commits are functional before they are automated, and additional tools are required to abort the deployment process and trigger human intervention when the tests reveal lower-than-expected quality results or outcomes.

Together with many indubitably advantages, CD adds an element of risk to the software release process, as frequent commits may introduce bugs to the live environment.

Organizations that implement continuous deployment must therefore develop real-time monitoring capabilities of the live environment to rapidly discover and address any technical issues that occur after new releases (see “Continuous Monitoring chapter”).

To sum up, the major benefits of CD are:

	Maintain Capability for Quick Releases. It enables teams to get their new releases into the production environment as quickly as possible. With CD, we can roll out several deployments per day.

	Rapid Feedback Loop. Developers can assess the impact of new changes by monitoring the deployment and watching users’ behavior. And they can make adjustments accordingly.

	Reducing Manual Processes with Automation. CD allows developers to automate the software development process to the greatest extent possible, especially when it comes to “release“ testing. Automation helps developers push out releases faster and spend less time on manual processes.

NSDF will:

	First implement Continuous Delivery _by adding libraries or container images to an Artifact Registry, allowing stakeholders/research scientists/partners to install binaries and start experiments with them.

	In the second phase of the pilot, since ssh-ing into a cluster and running commands is an unsustainable and error-prone practice, we will gradually introduce a full-fledged _deployment _on multi-regional lightweight Kubernetes clusters.

Cloud Deployment

We have several choices to deploy NSDF applications to the cloud:

	Infrastructure as a Service (IaaS).

	A cloud service provider (CSP) hosts the hardware components, including servers, storage, and networking hardware, as well as the virtualization or hypervisor layer

	Examples: AWS EC2, Google Compute Engine, Microsoft Azure, etc.

	Software as a Service (SaaS)

	it eliminates the need to install and run applications on the servers. It provides standalone and ready-to-use software on the cloud. This eliminates the expense of hardware procurement, provisioning, and maintenance as well as software licensing, installation, and support.

	Examples: Dropbox, Slack, Microsoft Office 365, etc.

	Platform as a Service (PaaS)

	A provider forms and supplies a strong and optimized environment in which users can install applications and datasets.

	Examples: AWS Lambda, AWS Elastic Beanstalk, Heroku, etc.

	Container as a Service (CaaS)

	It is a cloud-based service that allows software developers and IT departments to upload, organize, run, scale, and manage containers by using container-based virtualization. CaaS abstracts the full stack in a very compelling way, without the many challenging surprises existing in both IaaS and PaaS.

	Examples: Kubernetes, Docker Swarm, Apache Mesos, etc.

[image:]

Differences between "As a service" architectures

For the NSDF pilot the:

	IaaS approach is admitted. But NSDF is cloud-agnostic with no special preferences for commercial solutions. In general, we prefer to install orchestration tools on top of computing instances.

	SaaS/PaaS approach is discouraged: most of the time they are _vendor-lock-in_ and pay-per-use solutions. An exception is made for the Function As a Service (FaaS), a subset of PaaS, but only limited to open-source projects (e.g. OpenFaaS, Kubeless, OpenWhisk, etc. see See A (Very!) Quick Comparison of Kubernetes Serverless Frameworks – VSHN AG [https://www.vshn.ch/en/blog/a-very-quick-comparison-of-kubernetes-serverless-frameworks/])

	CaaS hybrid approach is probably the best for our pilot, where some services are deployed in the public cloud and some other services are deployed on-premises (i.e. local clusters):

	CaaS permits to deploy quickly and lightly on almost any infrastructure;

	CaaS provides commodified, standardized functionality on-premise and/or on public clouds;

	CaaS offers open container technology, which is the de-facto standard in the cloud industry;

	CaaS offers freedom and flexibility to developers.

Artifacts Repositories

Software releases should be made available through an Artifacts Repository Manager, as defined on Wikipedia as:

…a software tool designed to optimize the download and storage of binary files used and produced in software development. It centralizes the management of all the binary artifacts generated and used by the organization to overcome the complexity arising from the diversity of binary artifact types, their position in the overall workflow, and the dependencies between them.

The best practice is to follow the standard community consensus and make releases available through the most widely-used common channels.

Currently, our top choices to share NSDF artifacts are based on the programming languages:

	C/C++

	Windows using the specific Microsoft Visual Studio distributing the proper Microsoft Run-Time Kit

	macOS using the MacOSX10.9.sdk for portability on any recent macOS version

	Linux using manylinux [https://github.com/pypa/manylinux] (or manylinux2014, or manylinux_x_y) for broad compatibility with Linux distributions

	Python

	All public Python libraries must be released through PyPi [https://packaging.python.org/en/latest/tutorials/packaging-projects/].

	NSDF libraries with complex compilation requirements will be released to Conda-Forge [https://conda-forge.org/], which can produce platform-specific compiled versions.

	Docker

	A Docker image represents binary data that encapsulates an application and all its software dependencies.

	An image of an application is created and pushed to a registry. Images must be named as follows and tagged with the current version: nsdf/image-name:v1.0.0 .

	NSDF recommends using GitHub (or GitLab) as a public Container Registry [https://docs.docker.com/registry/introduction/]. (see Github Container Registry [https://github.com/features/packages])

	Kubernetes

	YAML files can be versioned in a GitHub repository as with code.

	For Helm, specific distribution NSDF recommends using Artifact Hub [https://artifacthub.io/].

	Artifact Hub allows publishers to list their content in an automated way (see See https://artifacthub.io/docs/topics/repositories/).

Deployment staging

A staging environment is an environment used to deploy software before it goes to production. Staging environments are generally meant to be identical or nearly identical to production.

Staging allows discovering code quality issues, integration problems, and other dependency issues which would not be as obvious in a minimal environment as the developer’s one.

Staging helps to discover cross-service problems, for example, a library that may work on a local machine but may not work in the cloud.

A staging environment is typically not made available to the outside, but rather it is made available to an internal user base.

[image:]

Different environments. Source: https://medium.com/hackernoon/staging-environments-are-overlooked-heres-why-they-matter-2082d2ee274a

Sometimes staging is replaced by canary [https://semaphoreci.com/blog/what-is-canary-deployment]or blue/green [https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment]deployments, but this approach still exposes users to bugs and misconfigurations.

Helm simplifies enormously the maintenance of different environments (e.g. staging vs production). It’s sufficient to 1) create a HELM chart 2) create several YAML value files, one for each environment 3) isolate resources in different namespaces:

kubectl create namespace staging
kubectl create namespace production
helm install nsdf-app-staging nsdf-app -n staging -f values-staging.yaml
helm install nsdf-app-prod nsdf-app -n production -f values-prod.yaml

Docker Containerization

Containerization enables the portability and reproducibility of data and/or code.

There are a plethora of container engines. However, it is not guaranteed that a container image generated by one container engine can be utilized by another. In addition, container engines tend to adopt different command lines which further complicate development.

[image:]

 Continuous Testing

 [image:]

Continuous Testing

Overview of section contents:

	Section

	Description

	Test-driven development

	NSDF recommends using TDD just for limited use cases

	Unit testing and frameworks

	Recommendation for software unit tests in order to improve software quality

	Other tests

	A few other software tests to improve quality

	Code Analysis

	Open-source tools for code analysis, particularly for C/C++ and Python

Print statements are not suitable for testing. They are just bad practices.

Continuous Testing is a defense against software defects across the software life cycle and it means continuous feedback on software quality.

This process is also known as shift-left testing, which stresses the concept of integrating development and testing activities to ensure quality is built-in as early as possible.

Test-driven development

Test-driven development (TDD) is a software development process that relies on the repetition of a short development cycle:

	first, the developer writes a failing test case that defines a desired function;

	then he produces code to pass the test;

	refactors the code to acceptable standards.

Test-driven development is related to the test-first programming concept of _Extreme Programming (see _Going Agile With The Test-First Development Approach [https://www.qmetry.com/blog/going-agile-with-the-test-first-development-approach/#:~:text=Test%2DFirst%20development%20or%20TDD,is%20design%20thinking%20in%20effect]) and is often linked to an agile programming approach.

NSDF recommends using TDD just for limited use cases. Our Software Stack implies too many integrations and complex interactions between different parts to be dealt with TDD.

Unit testing and frameworks

Unit testing is a method to demonstrate the correct behavior of the software. It’s the verification process to ensure that each software unit does what it’s required to do in terms of code safety, security, and reliability.

Unit testing must be an integral part of NSDF software development.

The adoption of unit tests has several benefits:

	facilitate changes: unit tests allow programmers to refactor code at a later date, and be sure that code still works correctly;

	simplify integration: unit testing may reduce uncertainty in the units themselves and can be used in a bottom-up testing style approach.

	is living documentation for the system: developers can look at the unit test’s code to gain a basic understanding of the APIs.

Mocking

Mock objects can simulate the behavior of real objects and they are very useful when a complex object is impractical to incorporate into a unit test. Mock objects can be used to

	supply non-deterministic results (e.g., current time);

	reproduce difficult states (e.g. a network error);

	reproduce slow states (e.g. simulate a database)

Mock objects have the same interface as real objects they mimic, allowing a client object to remain unaware of whether it’s using a real object or a mock object. Mock object frameworks allow the programmer to

	specify which methods will be invoked on a mock object,

	what parameters will be passed to them, as well as

	what values will be returned.

For example this PropHolder class:

class PropHolder {
public:
 PropHolder() { }
 virtual ~PropHolder() { }
 virtual void SetProperty(const std::string& name, int value) = 0;
 virtual int GetProperty(const std::string& name) = 0;
};

can be mocked into a new class:

class MockPropHolder: public PropHolder {
public:
 MockPropHolder() { }
 virtual ~MockPropHolder() { }
 MOCK_METHOD2(SetProperty, void(const std::string& name, int value));
 MOCK_METHOD1(GetProperty, int(const std::string& name));
};

and, during unit testing, we will specify its behavior:

AUTO_TEST_CASE(test_gmock)
{
 MockPropHolder mholder;
 EXPECT_CALL(mholder, GetProperty(std::string("test"))).Times(1).WillOnce(Return(101));
 EXPECT_CALL(mholder, SetProperty(std::string("test2"),555));
 TestClass(mholder).doCalc();
}

Unit testing frameworks

Unit test frameworks simplify the development of unit tests.

The most well-known frameworks belong to the xUnit [https://en.wikipedia.org/wiki/XUnit] family of frameworks (CppUnit, NUnit, etc.).

Frameworks from this family rely on:

	Assertions, that check individual conditions;

	Test cases, that combine several assertions, based on some common functionality;

	Test suites, that combine several tests, logically related to each other;

	Fixtures, that provide setup of data or state, needed for execution of some tests, and cleanup of state and/or data after the test is finished.

	_Frameworks _that control how tests are executed and collect failed tests.

Writing unit tests is a non-trivial time-consuming process: they should cover all public functions, main paths common and edge cases, etc (see this link [https://geosoft.no/unittesting.html]).

C++ Unit testing

There are many unit testing frameworks for C++ (see Wikipedia list of unit testing frameworks [https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C.2B.2B]).

NSDF recommends using one of the following (in no particular order of preference):

	Google C++ Testing Framework [https://code.google.com/p/googletest/] is an open-source project hosted at GitHub, and it can be used on all platforms. Plus it has full support for mocking (see the Google Mocking framework).

	Boost.Test [https://www.boost.org/doc/libs/1_75_0/libs/test/doc/html/index.html] was created by several people on the C++ standards committee. It’s popular with developers who use the other Boost libraries. It has excellent documentation and handles particularly well exceptions and crashes. It lacks mocking features

	banditcpp [https://github.com/banditcpp/bandit] is a modern C++ unit testing framework with support for Lambdas. It’s available under the open-source license, and it supports C++11.

	CppUnit [https://sourceforge.net/projects/cppunit/]is the C++ porting of the JUnit framework. It may be hard to use because of the lack of documentation.

Python Unit testing

There are a lot of good and advanced Python libraries to perform unit testing (e.g. robotframework [https://pypi.org/project/robotframework/], doctest [https://github.com/doctest/doctest], nose2 [https://pypi.org/project/nose2/], testify [https://pypi.org/project/testify/], etc).

NSDF recommendation is to use either the standard built-in Python Library unittest [https://docs.python.org/3/library/unittest.html] or the pytest [https://pypi.org/project/pytest/], used for example by NumPy.

An example of a Python unit test for a factorial function:

import unittest
import math
import factorial_v1
from test import test_support
class FactorialTest(unittest.TestCase):
 def setUp(self):
 print("setup")
 def tearDown(self):
 print("cleanup")
 def test_positives(self):
 for x in range(0,10+1):
 act = math.factorial(x)
 val = factorial_v1.fact(x)
 self.assertAlmostEqual(act, val, 1e-1)
 def test_negative(self):
 passed = False
 try:
 factorial_v1.fact(-3)
 except Exception as e:
 passed = True and (e.message.find("Cannot calculate")>= 0)
 self.assertTrue(passed)
if __name__ == "__main__":
 test_support.run_unittest(FactorialTest)

Go Unit Testing

The Go programming language comes with a built-in unit testing framework. This framework has been standardized across projects. The package is “testing”, and the command is go test. Go will look for files named *_test.go files. The testify require package makes assertion testing easier with intuitive functions to call.

package mcmodel
import(
 “errors”
 “testing”
 “github.com/stretchr/testify/require”
)
func TestQueryDataset(t *testing.T) {
 x := 5
 // Two ways to test with and without testify
 // Without testify
 if x != 5 {
 t.Errorf(“Expected x == 5, got %d”, x)
 }
 // with testify
 require.Equal(t, 5, x, “x should be 5”)
}

Other tests

There is extensive literature about manual or automatic testing. It’s out of scope to cover them all.

[image:]

Types of software testing

But just to name a few that could be adopted for the NSDF software stack:

	Integration testing to test whether multiple software components function well together as a group.

	Regression testing: to verify that the recent changes or updates have no negative effect on the already existing functionality.

	Interoperability testing: to check if the software can interact with other components without any compatibility issues.

	Availability/Disaster recovery testing: it is also a measure of how long failures will last and how much time the repair can take.

	Compatibility/Portability testing: how seamlessly the product operates with other components: OS, browsers, hardware, etc…

	Scalability/Load /Stress testing. ensures that the application can grow in proportion to the increasing demands of the end-users. It checks the quality of the system under high-peak loads.

	Security testing tries to find the system’s vulnerabilities and determine how confidential data and internal resources are protected.

	Maintainability testing measure the ability to safely go through changes and updates.

Code Analysis

NSDF recommends adding to the CI/CD pipeline either static analyzers, runtime checkers, or code coverage tools.

Code coverage refers to how much of your code is being executed while your automated tests are running. This metric is calculated by special tools that add tracing calls inside the binaries of your code. This insight into your applications can inform future development, for example: () finding what parts of your code are covered by your tests () finding what parts of your code are not covered by tests (*) removing dead code.

Code coverage cross-language tools include:

	Codecov [https://about.codecov.io/] with unified coverage and separate coverage

	Coveralls.io [https://coveralls.io/] is free for open source repositories and very popular

C++ Code Analysis

For C++ this is a non-exhaustive list of static analyzers:

	Cppcheck [https://cppcheck.sourceforge.io/] provides code analysis to detect bugs, undefined behavior, and dangerous coding constructs

	cppclean [https://github.com/myint/cppclean] is focused on finding problems in C++ sources that slow the development of large codebases

	codechecker [https://github.com/Ericsson/CodeChecker] is built on the LLVM/Clang Static Analyzer toolchain

	Flint++ [https://github.com/JossWhittle/FlintPlusPlus] is a cross-platform, zero-dependency program developed and used on Facebook.

	OCLint [https://oclint.org/] reduces defects by inspecting C, C++, and Objective-C code

For code coverage, we suggest adopting open-source tools well integrated into the CI pipeline such as Codecov [https://about.codecov.io/] or Coveralls.io [https://coveralls.io/].

Python Code Analysis

In the Python arena, Coverage.py [https://coverage.readthedocs.io/en/latest/] is one of the most complete and well-maintained projects.

Also worth mentioning are:

	Codacy [https://www.codacy.com/] , Code quality, and coverage grouped by file

	Scrutinizer CI [https://scrutinizer-ci.com/] , Code Quality, and coverage grouped by class and function

Besides code coverage, various tools for static analysis and linting (Mypy [http://mypy-lang.org/], Pylint [https://pylint.org/] , Flake8 [https://flake8.pycqa.org/en/latest/]) as well as automatic code formatting (Black [https://github.com/psf/black]) options exist for Python.

Links/Bibliography

List:

	http://alexott.net/en/cpp/CppTestingIntro.html

	Unit Testing Guidelines [https://geosoft.no/unittesting.html]

	Ten C++ Testing Tools for Developers to Consider [https://www.codeguru.com/cplusplus/ten-c-testing-tools-for-developers-to-consider/]

	Unit Test Frameworks [https://www.amazon.com/gp/product/0596006896?ie=UTF8&tag=aleottshompag-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0596006896]

	Practical Testing [http://www.lenholgate.com/blog/2004/05/practical-testing.html]

	Unit Testing Frameworks in Python [https://www.zenesys.com/blog/unit-testing-frameworks-in-python]

	Python Unittest Vs Pytest [https://www.pythonpool.com/python-unittest-vs-pytest/]

	Automated Regression Testing: A Comprehensive Guide [https://www.perfecto.io/blog/automated-regression-testing]

	Functional Vs Non-Functional Testing: Expert Guide - UTOR [https://u-tor.com/topic/functional-vs-non-functional]

	The Best Code Coverage Tools By Programming Language [https://about.codecov.io/blog/the-best-code-coverage-tools-by-programming-language/]

	Use the Tools Available · C++ Best Practices [https://lefticus.gitbooks.io/cpp-best-practices/content/02-Use_the_Tools_Available.html]

	Automated Defect Prevention: Best Practices in Software Management | Wiley [https://www.wiley.com/en-us/Automated+Defect+Prevention%3A+Best+Practices+in+Software+Management-p-9780470042120]

	Github Action for Unit Testing [https://medium.com/@dev.soni04/github-action-for-unit-testing-57faefc9633]

	Unit testing - Wikipedia [https://en.wikipedia.org/wiki/Unit_testing]

	Guide: Writing Testable Code [http://misko.hevery.com/code-reviewers-guide/]

 Continuous Documentation

 [image:]

Continuous Documentation

Overview of section contents:

	Section

	Description

	Markdown

	The Markdown language for lightweight documentation

	Documentation as code

	NSDF recommendation is to follow the “Documentation of code” philosophy as closely as possible

	Code as Documentation

	Code in a way that is more readable and self-explaining, particularly practices for C++ and python

	Documentation tools

	Documentation using Jupyter Notebook and Web service API

Say what you mean, simply and directly. Don’t comment on bad code, rewrite it, Make sure comments and code agree (The Elements of Programming Style [https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style] by Brian W. Kernighan and P. J. Plauger)

[image:]

Documenting Software is an important activity of development and it is fundamental for software maintenance _and _knowledge transfer.

But writing too much and too verbose documentation could be a problem itself, and for this reason, NSDF recommends following some principles contained in the “Agile Manifesto” (written by seventeen software developers on February 11-13, 2001, at The Lodge at Snowbird, a ski resort in the Wasatch mountains of Utah see Manifesto for Agile Software Development [https://agilemanifesto.org/iso/en/manifesto.html]):

We embrace documentation, but not hundreds of pages of never-maintained and rarely-used tomes

[…]
While there is value in the comprehensive documentation we value working software more.

Documenting software is always an imperfect compromise: too much documentation would be a waste of time, and developers will rarely trust it anyway because it’s usually out of sync with the actual code. On the other hand, too little documentation is always a source of problems with team communication, learning, and knowledge sharing.

[image:]

So NSDF’s major recommendation is to “document code efficiently”:

	Write only the minimum, useful, accurate documentation

	Make sure documentation is “just barely good enough”. Any document will need to be maintained later on.
If the documentation is light it’s easier to comprehend and update.

	Write it “just in time” (JIT).

	Wait before documenting.

	Produce documentation when it is needed, not before.

	System overviews and support documentation are best written towards the end of the software development life cycle.

	Cut out anything unnecessary

	documentation is only useful if it’s accessible.

	Follow code changes; have documents that are always shippable

	Keep documents in one place and make them accessible online.

	Store your product documentation in a place where all the members and external contributors can find it.

	Collaborate. Writing documentation is a collaborative and instructive process

	Every team member should be encouraged to contribute.

[image:]

 Continuous Monitoring

 [image:]

Continuous Monitoring

Overview of section contents:

	Section

	Description

	Kubernetes Monitoring

	Automated process to observe and detect compliance issues and security threats, especially with Kubernetes

Monitoring an application’s state is one of the most effective ways to anticipate problems and discover bottlenecks in a production environment. Yet it is also one of the biggest challenges.

The growing adoption of microservices makes logging and monitoring a very complex problem since a large number of applications, distributed and diversified in nature, are communicating, and a single point of failure can stop the entire process.

Continuous Monitoring (CM) is an automated process to observe and detect compliance issues _and _security threats; it helps to monitor, detect, and study metrics, and to resolve issues in real-time.

CM means monitoring:

	Infrastructure that includes data centers, networks, hardware, software, servers, storage, etc. Common metrics to watch are: server availability; CPU; servers; system uptime; database health; disk usage; storage; security etc.

	Applications that track software performance. Common measures to track are availability; error rate; throughput; response time; end-user transactions; Service Level Agreement (SLA) etc.

	Network or network activity and related hardware (firewalls, routers, switches, servers, etc). It measures latency; multiple port metrics; server bandwidth; packets flow, etc.

Kubernetes monitoring

Kubernetes runs in more than 70 percent of container environments (see Kubernetes adoption, security, and market trends report 2021 [https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview]). And monitoring has become a key way to extract runtime information. which is critical when troubleshooting issues and optimizing performance, both proactively and reactively.

However, Kubernetes presents a unique challenge on two fronts: setup and monitoring. It’s difficult to nail the deployment in an organized and_ high-performing_ way. Common mistakes involve incorrectly sizing of nodes, consolidating containers, or properly creating namespaces.

Roughly 49 percent of containers use under 30% of their requested CPU allocation, and 45% of containers use less than 30% of the RAM (see See 10 Trends in Real-World Container Use [https://www.datadoghq.com/container-report/]). Real-time monitoring can help in preventing these problems.

Kubernetes monitoring captures logs and events from the cluster, pods, containers, host machines, and containerized applications.

[image:]

Three types of Kubernetes metrics can be tracked:

	Resource metrics that include information like CPU, memory usage, filesystem space, network traffic, etc. that can be queried using the Kubernetes Metrics API.

	Service metrics include metrics produced by Kubernetes infrastructure, as well as those produced by containerized applications by deploying the Kube-state-metrics component.

	Custom metrics implemented using additional adapters to add metrics through the Kubernetes API aggregation.

In addition to monitoring, engineers may also want to capture logs _and _events. The simplest way for logging is to write logs to standard output (stdout) and standard error (stderr) streams. As these logs are created, the kubelet agent writes them into a separate file that can be accessed by the user. This process is known as node-level logging.

A significant problem with node-level logging is the instability of logs: when a Kubernetes pod terminates or moves, logs are deleted and this makes it impossible to review them after a crash.

To get around this issue, NSDF will need to set up cluster-level logging not natively supported by Kubernetes since it relies on additional drivers to push logs to the storage back-end.

There are two approaches to set up the _cluster-level logging _service:

	use Cloud Native Computing Foundation (CNCF) projects. This approach has the advantage of using open-source projects and being backed up by large and active communities.

	use of Software as a Service (SaaS) software, usually provided by commercial companies as a_ pay-per-use _service.

Container Advisor, Prometheus, Grafana

This CNCF monitoring solution is made of a:

	Container Advisor [https://github.com/google/cadvisor] is a monitoring tool that exposes data from running containers, including resource usage and performance metrics.

	Prometheus [https://prometheus.io/] provides event monitoring and alerting capabilities, including data stored in the form of metrics, time-series data collection, alerts, monitoring, and querying. Prometheus has emerged in the last years as the d_e-facto open-source standard_ for Kubernetes.

	Grafana [https://grafana.com/] is a web application for analytics and interactive visualization. It includes charts, graphs, and alerts. There are also many ready-to-use dashboards in Grafana Labs [https://grafana.com/grafana/dashboards]; (e.g. a dashboard to control AWS costs; a dashboard to check the healthiness of an nginx load-balancer, etc).

[image:]

Example of Grafana dashboard

ElasticSearch, Logstash, Kibana

Another solution is to use the “ElasticSearch + Logstash + Kibana“ (ELK) stack that is composed by:

	Elasticsearch [https://www.elastic.co/] is _a distributed, open-source search and analysis engine with full-text indexing capabilities, based on Apache Lucene, Data can be parsed, normalized, and enriched before being indexed.

	Logstash [https://www.elastic.co/logstash/] is a data collection engine that acts as a data pipeline. Users can aggregate logs and event data from a variety of potential sources and enrich the data with out-of-the-box aggregation and mutations.

	Kibana [https://www.elastic.co/kibana/] is a data visualization tool to create histograms, charts, graphs, and other real-time visual representations.

When Fluentd [https://www.fluentd.org/]\ is used instead of _Logstash, _then _the stack is renamed EFK.

ELK/EFK may have some problems with increasingly log volumes.

[image:]

Example of Kibana dashboard

Other K8s monitoring/Logging solutions

Some other solutions, that may be worth NSDF considerations, are:

	Sematext Monitoring [https://sematext.com/spm/] is a Software as a Service (SaaS) monitoring solution for both traditional and microservice-based applications, capturing metrics and events in real-time.

	Sensu [https://sensu.io/] is a SaaS solution that is free for <100 nodes. It offers an end-to-end observability pipeline to collect, filter, and transform monitoring events and send them to a database. The metrics can include system metrics, as well as custom application metrics.

	Logz.io [https://logz.io/] is a SaaS solution that is free for the community with 1 day of log retention (max 1GiB). It’s a fully managed and autoscaling ELK stack and has some ML analytics.

	Jaeger [https://github.com/jaegertracing/jaeger] is a free tracing tool used for monitoring and troubleshooting in complex distributed systems. It was released and open-sourced by Uber Technologies in 2016. With Jaeger, users can perform root cause analysis, distributed transaction monitoring, distributed context propagations, service dependency analysis, and performance and latency optimization.

	Kubewatch [https://github.com/bitnami-labs/kubewatch] is a watcher that publishes notifications to available collaboration hubs/notification channels. Once the Kubewatch pod is running, events will start streaming to a Slack channel or other configured webhooks.

	Weave Scope [https://github.com/weaveworks/scope] is a monitoring tool that allows gaining operational insights and it allows to manage containers and run diagnostic commands within this UI.Very strong candidate

	Fluent Bit [https://fluentbit.io/] is a lightweight data shipper that excels in acting as an agent on edge-hosts, collecting and pushing data down the pipelines.

	Kubernetes Dashboard [https://github.com/kubernetes/dashboard] is a basic simple-to-setup web add-on for K8s clusters. It exposes basic metrics across all nodes and monitors the health of workloads (pods, deployments, replica sets, cron jobs, etc.).

	Lens [https://www.mirantis.com/software/lens/] is not a full monitoring solution, but rather a Kubernetes integrated development environment (IDE). The service bundles a contextual terminal with Prometheus statistics while ensuring that logs are easily viewable. Also, real-time graphs are available in the dashboard.

Note that NSDF excluded from the list any professional, production-grade but expensive tools such as Datadog [https://www.datadoghq.com/], New Relic [https://newrelic.com/], Dynatrace [https://www.dynatrace.com/], Instana [https://www.instana.com/], Turbonomic [https://www.turbonomic.com/], Sysdig [https://sysdig.com/], Splunk [https://www.splunk.com/en_us/hp21.html], etc.

Links/Bibliography

List:

	Top 13 Kubernetes Monitoring Tools [https://sematext.com/blog/kubernetes-monitoring-tools/]

	Top 11 Open Source Monitoring Tools for Kubernetes [https://logz.io/blog/open-source-monitoring-tools-for-kubernetes/]

	Kubernetes Monitoring: Best Practices, Methods, and Solutions [https://logz.io/blog/kubernetes-monitoring/]

	Kubernetes Monitoring Dashboards [https://loft.sh/blog/kubernetes-monitoring-dashboards-5-best-open-source-tools/]

	Kubernetes Monitoring - A Simplified Guide [https://www.chaossearch.io/blog/kubernetes-monitoring-guide]

	What is Continuous Monitoring in DevOps? [https://www.browserstack.com/guide/continuous-monitoring-in-devops]

	Monitoring in the Kubernetes Era | Datadog [https://www.datadoghq.com/blog/monitoring-kubernetes-era/]

​

 Software Security

 [image:]

Software Security

Overview of section contents:

	Section

	Description

	Enforce security of sensitive data

	Use vault-like solutions to store sensitive data, such as passwords, security tokens.

	Enforce security of continuous integration

	ways to prevent the leaking of sensitive information when using Git, such as passwords, tokens.

	Enforce security of the continuous deployment

	Measurements to perform even when the CD tools may have failed to automatically remove the credentials

	Security scans

	Security scan to avoid vulnerabilities, particularly Python and Docker images

	Automatic tools

	The automatic tools to improve software quality

This section contains some best practices to keep the NSDF software stack safe and secure.

Enforce Security of sensitive data

The best approaches to store and share passwords, security tokens, sensitive information is:

	Use 2-Step verification_, also known as multi-factor authentication (MFA) for all users: even if some password WAS stolen, it’s almost impossible to log in without a second device

	Create_ short-lived tokens for any automatic procedure. This means to:() create the token and limit as much as possible its scope () use the token for a limited timeframe (*) remove the token while the activity is finished

	Always follow the Principle of Least Privilege [https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege] i.e. do not create security tokens with _Full Access _permissions.

	Configure a strong password policy for users, and rotate keys (link [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_RotateAccessKey])

To store sensitive data we suggest using a vault-like solution such as Confidant [https://lyft.github.io/confidant/] or HashiCorp Vault [https://www.vaultproject.io/], both free for open source projects.

Enforce Security of Continuous Integration

Stealing passwords and tokens in a Git public repository can be as easy as running a single line command (link [https://twitter.com/TomNomNom/status/1133345832688857095] from “Ethical Hacker”) which dumps the contents of a repository’s object database :

{ find .git/objects/pack/ -name "*.idx"|\
while read i; \
do git show-index < "$i"|awk '{print $2}';done;f\
ind .git/objects/ -type f| \
grep -v '/pack/'| \
awk -F'/' '{print $(NF-1)$NF}'; }|while read o;do git cat-file -p $o;done|\
grep -E 'pattern'

The best approaches for these kinds of security leaks are:

	Before pushing to GitHub: use truffleHog [https://github.com/trufflesecurity/truffleHog] or gitleaks [https://github.com/zricethezav/gitleaks] (or alternatives) to search for secrets, to dig into commit history and branches, to find secrets accidentally committed.

	Before pushing to GitHub: clean up Jupyter Notebooks output or other clean-text documents using nb-clean [https://github.com/srstevenson/nb-clean] (or alternatives)

	After pushing to GitHub: use online open-source scanning solutions such as Spectral [https://spectralops.io/security-vs-deployment-with-scan-one-step/?matchtype=e&creative=566587473774&network=g&device=c&keyword=github%20security%20scanning&country=1008736&campaign=15232525134&adgroup=126978626542&position=&utm_term=github%20security%20scanning&utm_campaign=git-security&utm_source=google.com&utm_medium=cpc&hsa_acc=1287660619&hsa_cam=15232525134&hsa_grp=126978626542&hsa_ad=566587473774&hsa_src=g&hsa_tgt=kwd-703389353225&hsa_kw=github%20security%20scanning&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQiAieWOBhCYARIsANcOw0wfv7lpUjKXbJxT8cPAu9wSOop87TwjKd-WBEr86tIetskNLGvtgpIaAk-4EALw_wcB]

Enforce Security of Continuous Deployment

All CD tools automatically filter secure environment variables and tokens r_emoving them from the _build log and replacing them with some obfuscated text. But, once a VM is booted and tests are running, all these tools have less control over what information utilities or add-ons can print to the VM’s standard output.

As an example, just running an env command from TravisCI, secrets will be publicly exposed (see Travis CI Vulnerability Potentially Leaked Customer Secrets [https://www.infoq.com/news/2021/09/travis-ci-secrets-leak/]).

[image:]

Example of token leak on TravisCI

Possible countermeasures are:

	Drastic countermeasures:

	do a manual deployment and/or move your CI/CD pipeline on-premise.

	Soft countermeasures:

	disable all settings which duplicate commands to standard output (e.g `set -v),

	disable any displaying environment(e.g. env or printenv)

	avoid printing secrets within the code(e.g. echo $SECRET_KEY)

	avoid any shell commands that may expose tokens or secure variables (e.g. git fetch or git push)

	avoid mistakes in string escaping

	avoid increasing command verbosity if not strictly necessary

	redirect output to /dev/null

	rotate secrets periodically

	Off-the-shell countermeasures:

	use standalone solutions to do the online CD scanning

Security Scans

NSDF must constantly check source code for the most exploited security weaknesses and vulnerabilities in software including the:

	2021 CWE Top 25 Most Dangerous Software Weaknesses [https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html]

	OWASP Top Ten Web Application Security Risks [https://owasp.org/www-project-top-ten/]

This process should be automatic, ideally running on every new commit (i.e. several times /day), thus limiting the manual intervention to periodic full checks

[image:]

 Top used industry standards to asset software quality and security.

Also, NSDF recommends finding Python security issues using Bandit [https://github.com/PyCQA/bandit] (or alternatives):

Bandit is a tool designed to find common security issues in Python code. To do this Bandit processes each file builds an AST from it and runs appropriate plugins against the AST nodes. Once Bandit has finished scanning all the files it generates a report.

and performing safety checks onP ython dependencies using:

	Safety [https://pyup.io/safety/]: a command-line tool to check virtual environment, requirement files, or any input from stdin for dependencies with security issues), [https://github.com/sonatype-nexus-community/jake]

	Jake [https://github.com/sonatype-nexus-community/jake]: a tool to check for your Python environments and applications that can report on known safety vulnerabilities),

	consider alternatives.

Finally, NSDF recommends adding Security scans of Docker Images.

Several security leaks are related to the Docker technology:

	Security problems with the container image and the software running inside

	Security problems regarding the interaction between a container, the host operating system, and other containers on the same host

	Security problems related to the host operating system

	Container networking and storage

To avoid such leaks, the simplest solution is to scan images during development (i.e. _run docker scan, Clair [https://github.com/quay/clair], Anchore [https://anchore.com/opensource/], Dagda [https://github.com/eliasgranderubio/dagda/], Docker Benc [https://github.com/docker/docker-bench-security] before the Git pushing).

Also, consider following best practices from Docker official documentation:

	Each container should have only one responsibility.

	Containers should be immutable, lightweight, and fast.

	Don’t store data in your container.

	Containers should be easy to destroy and rebuild.

	Use a small base image (such as Linux Alpine). Smaller images are easier to distribute.

	Avoid installing unnecessary packages. This keeps the image clean and safe.

	Avoid cache hits when building.

	Auto-scan your image before deploying to avoid pushing vulnerable containers to production.

	Scan your images daily both during production

Automatic scan on Docker Hub after the deployment is restricted to commercial accounts.

Automatic tools

See the “Software Quality/Tools” paragraph.

Almost all the automatic software quality tools also provide automatic checks for security and vulnerabilities.

Links/Bibliography

List:

	Plugging Git Leaks: Preventing and Fixing Information Exposure in Repositories [https://www.honeybadger.io/blog/git-security/]

	How to Choose a Secret Scanning Solution to Protect Credentials in Your Code [https://spectralops.io/blog/how-to-choose-a-secret-scanning-solution/]

	About code scanning [https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/about-code-scanning]

	Best Practices in Securing Your Data - Travis CI [https://docs.travis-ci.com/user/best-practices-security#recommendations-on-how-to-avoid-leaking-secrets-to-build-logs]

	Security scanners for Python and Docker: from code to dependencies [https://pythonspeed.com/articles/docker-python-security-scan/]

	Scanning your Conda environment for security vulnerabilities [https://pythonspeed.com/articles/conda-security-scans/]

	Best practices for scanning images [https://docs.docker.com/develop/scan-images/]

	10 Container Security Scanners to find Vulnerabilities [https://geekflare.com/container-security-scanners/]

	https://geekflare.com/secret-management-software/

 Software Quality

 [image:]

Software Quality

Overview of section contents:

	Section

	Description

	Reliability

	How NSDF builds reliable code

	Efficiency

	How NSDF builds efficient code

	Security

	The practices that NSDF takes to ensure secured code

	Maintainability

	The practices that NSDF takes for code maintenance

	Rate of Delivery

	NSDF adopts the agile software development approach

	Automatic tools

	NSDF utilizes the CI/CD pipeline tool for checking software quality

[image:]

Software Quality is a very complex and broad argument, and it’s out of the scope for this document to cover it in detail.

There are several methods for evaluating software quality, and choosing the right one is a difficult task as well since it depends on the software product, the project objectives, and the context of use.

Experts agree that high-quality code uses coding conventions, is readable and well documented, is reusable and avoids duplication, handles errors diligently, is efficiently using resources, includes unit tests, and complies with security best practices.

In the following sections, we use the Software Quality definition given by the Consortium for Information & Software Quality (CISQ), a group that develops standards for automating the measurement of software size and structural quality.

[image:]

 Appendix I. Git Workflows

Appendix I. Git Workflows

Centralized Workflow

The Centralized Workflow uses a central repository to serve as the single point-of-entry for all changes to the project. The default development branch is called main and all changes are committed into this branch.

This workflow doesn’t require any other branches besides main.

[image:]

Figure. Example of centralized workflow

In the figure above, we show a typical example of a centralized workflow:

	the user “purple” develops, commits, and pushes changes to the central repository (Origin/Main).

	Meanwhile, user “white” is developing and committing locally. His changes are temporarily _on-hold _since he is in bug-fixing mode.

	When user **‘white’ **tries to push its changes remotely, he receives an error because he is out-of-sync _with the central repo._

	He does a git pull --rebase, to merge the new changes; he eventually resolves conflicts, and he pushes the new changes to the origin

In the end, this workflow works as there was just one development continuous line.

Feature Branching Workflow

Feature Branching (also known as Task Branching) is a logical extension of Centralized Workflow.

The idea behind “Feature Branches” is that all feature development should take place in a dedicated branch instead of the main branch. This encapsulation makes it easier for multiple developers to work on a particular task without disturbing the central codebase.

These branches are often referred to as_ user stories_.

The main branch should never contain broken code, which is a huge advantage for continuous integration environments.

Feature Branching also helps developers _easily segment _their work: instead of tackling an entire release, they can focus on a small set of changes.

Feature branches can also be divided up according to specific feature groups. Each team or sub-team could maintain its branch for development. once finished, changes can be tested and reviewed before the final integration.

[image:]

 Index

Index

_images/agile-sdlc.png
EVOLUTIONARY

Iterative&Incremental model

FORMAL INFORMAL

Waterfall

SEQUENTIAL

_images/as-a-service.png
You manage

On-Premises
Applications
Data
Runtime

Middleware

ageuew ap

You manage

Infrastructure
(as a service)

Applications

Data

Runtime

Virtualization
Servers
Storage

Networking

aBeuew am

You manage

Platform
(as a service)

Applications
Data
Runtime
Middleware
o/s
Virtualization
Servers
Storage

Networking

aBeuew am

Software
(as a service)

Applications
Data
Runtime.
Middleware
o/s
Virtualization
Servers
Storage

Networking

oBeuew am

_images/NSDF.png

_images/code-version.png

_images/codereviews.png
THIS IS THE CODE
THAT CAUSED THE IT WAS IrlzﬂAZAévf
DATA BREACH CHECKED IN i
BY JOE LAST COMBAT!
FRIDAY O £

LEADERSHIP

CODEMONKEYKUNGFU.COM @ DANE MORGRIDGE

_images/centralized-workflow.png

_images/cisq.png
Application Architecture Standards
- Multlayer design compliznce (Ul s App Domain vs
InfrastrucureiData)
- Data access perormance
- Coupling Ratos
+ Component or patter) reuse ratios
Coding Practices. Reliability
 Enoriexcepton handiing (al layers UiLogicidata)
- Ifapplcable - compliance with OO and sructured
programming praciices
- Secure contols (acoess to system functions, access:
controls to programs) Security

Complexity

 Transaction

- Agorithms.

+ Programming practices (eg use of polymorphism, dynamic Efficiency
instantation)

* Diny programming (dead code, empty code...)

Documentation

+ Code readability and structuredness T

+ Architecture -, program, - and code-level documentation Maintainability
ratios.

+ Source code file organization

Portability: Hardware, 0S and Software component and
DB dependency levels. Size

Technical and Functional Volumes

+ #LOC pertechnology, # of atiacts, fles

+ Function points. - Adherence to specifications (IFPUG,
Cosmic references..)

_images/continuous-pipeline.png
L NAL

oA cove eu.w> resr weiease > oesov D operare

_images/continuous-something.png
. AUTOMATIC
. MANUAL

Continuous integration

ACCEPTANCE DEPLOY TO DEPLOY TO
SUIEDS) TEST STAGING Bl rrobuction gl SVIOKE TESTS

Continuous delivery

ACCEPTANCE DEPLOY T
SLEDS . TEST o STAGING o

Continuous deployment

IERl SMOKE TESTS

_images/cpp-sphinx.png
cat Struct Reference

Public Member Functions
o makecte

Detailed Description

Anay e
Member Function Documentation

+make_cute()

Doxygen output

struct cat
Afluffy feline

Public Functions.

void make_cute()

Make this cat look super cute

Sphinx output

nav.xhtml

 Table of Contents

 		
 NSDF Software Development Life Cycle Procedures

 		
 Introduction

 		
 Software checklist

 		
 Programming languages and conventions

 		
 C/C++

 		
 Python

 		
 Go

 		
 JavaScript

 		
 Awesome List

 		
 Links/Bibliography

 		
 Continuous Integration

 		
 Version control

 		
 Git branches

 		
 Git workflows

 		
 Semantic Versioning

 		
 Code reviews

 		
 Links/Bibliography

 		
 Continuous Delivery and Deployment

 		
 Cloud Deployment

 		
 Artifacts Repositories

 		
 Deployment staging

 		
 Docker Containerization

 		
 Kubernetes Orchestration

 		
 High-Performance Computing Deployment

 		
 Links/Bibliography

 		
 Continuous Testing

 		
 Test-driven development

 		
 Unit testing and frameworks

 		
 Mocking

 		
 Unit testing frameworks

 		
 C++ Unit testing

 		
 Python Unit testing

 		
 Go Unit Testing

 		
 Other tests

 		
 Code Analysis

 		
 C++ Code Analysis

 		
 Python Code Analysis

 		
 Links/Bibliography

 		
 Continuous Documentation

 		
 Markdown

 		
 Documentation as Code

 		
 Code as Documentation

 		
 Use intention-revealing names

 		
 Refactor long blocks

 		
 Use informative comments

 		
 Use class-level documentation

 		
 Use method-level documentation

 		
 Use proper formatting

 		
 Use error handling

 		
 C++ Documentation

 		
 Python Documentation

 		
 Jupyter Notebooks Documentation

 		
 Web Services API Documentation

 		
 Representational State Transfer (RESTful) API

 		
 RESTful documentation

 		
 Links/Bibliography

 		
 Continuous Monitoring

 		
 Kubernetes monitoring

 		
 Container Advisor, Prometheus, Grafana

 		
 ElasticSearch, Logstash, Kibana

 		
 Other K8s monitoring/Logging solutions

 		
 Links/Bibliography

 		
 Software Security

 		
 Enforce Security of sensitive data

 		
 Enforce Security of Continuous Integration

 		
 Enforce Security of Continuous Deployment

 		
 Security Scans

 		
 Automatic tools

 		
 Links/Bibliography

 		
 Software Quality

 		
 Reliability

 		
 Efficiency

 		
 Security

 		
 Maintainability

 		
 Rate of Delivery

 		
 Automatic Tools

 		
 Links/Bibliography

 		
 Appendix I. Git Workflows

 		
 Centralized Workflow

 		
 Feature Branching Workflow

 		
 Gitflow Workflow

 		
 Forking Workflow

 		
 GitHub Flow

_images/environments.png
Unittest are run and Inteqration testing . Tests on production
pull request is & rormad 9 data in a non
approved P production env

Local developer Integration Test Staging Production
Environment Environment Environment Environment

For internal mrhouse users only
No exposed to the production
tom down after production deployment

_images/feature-branching.png
@ Feature Branching Without Flags

Feature Branch A

Feature Branch B

Your Users

@ LaunchDarkly

_images/document-code-efficient.png
THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION, JUST

START WRITING CODE

AND COMPLATINING.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

~ THAT
IT s was Your

NAME. TRAINING.

scottadams@acl.com

1-2¢-07 ©2007 Scott Adams, Inc./Dist. by UFS, Inc.

www.dilbert.com

_images/documentation-process.png

_images/git-brancing.png

_images/gitflow-workflow.png

_images/flexera-report.png
Container Tools Used
% of all respondents

Docker 53% 21%
AWS ECS/EKS 51% 23%
Kubernetes
Azure Container Service
Google Kubernetes Engine (GKE) 31% 28%
Red Hat Openshift 27% 23%
Docker Enterprise 25% 25%
Docker Swarm 23% 23%
VMware Tanzu (Pivotal) mCurrently use
Rancher 16% 21% = Planto use

Mesosphere 13% 21%

_images/forking-workflow.png
alice origin origin
|
Clone Clone
-~ ——
> -«
Push Push
Fork
Alice's \ (i David's
account Pull-"q | account
Request
Bob's Pull- Clair's
account Request, account
bob (" origin 5 [origin clair
| |
Clone Clone
-— —
> e -t
Push G Push

_images/graphana.png
28 New Layouts -

<<<<<<<<<<<<<

_images/iso.png
Fottwarerodu]

ey
T | [P | [| [o | [e | [e][] [e
ettt W frev oo [comnce {|ezromssoes(L] sy [conmme [moosery [asssar
el R I [N ey S I N § - —
= L . S RN RO U X P—
H s Recoverabiny |- Authenticty Modifabity
[H v e U sconiy [vy

_images/k8-costs.png
Cost

Managed k8s Pricing (monthly)

—o— GKE
$2000 o— EKS
—e— AKS
$1500 —e— DO
$1000
$500
$0
0 s 3 3, 5
0y, S0, 0, "o, W, %S %, So Yo, %o, %0,
"Q 0 "Q > Cey, Coy, Cry, (2 Coy, Cey, Cey, Coy, oy,
0, %0 "V, %, %, oy RS) "6) " 20
S % Gy G G g g g g g g
&) e, , », #, 8 8 8 8] 2]
no, - Mo, e, e, e, e, ,77 s, " Me, " /‘7@/» /‘1@0] e, "
3 % n n, or, or, ory, 0ry, on, or,

Cluster Size (Worker Nodes)

_images/k8s-monitoring.png
4 components to monitor

2 components to monitor 3 components to monitor
4
-
B3 B - ' 3
M AE as

2

1 i
Traditional Containerized Orchestrated Containerized
Infrastructure Infrastructure

Infrastructure

_images/kibana.png
B oeshboard / [Logs] Web Traffic

Filters |search KaL ® v Last7days Show dates

+ Add filter
Source Country os Bytes [Logs] Visitors by 0S
Select.. Select.. [}
0 19056 win7 (19.44%) 05 (20.74%)
ios (19.5%)
win xp (2019%)
[Logs] Traffic Overtime [Logs] Heatmap
win 8 (2012%)
oN
N
us
[Logs] Source and Destination Sankey Chart Hours a day

1800
1400 Jnique visitors by country
1200

1000

800

600

00

200

o

Destination Source

_images/k8s-architecture.png
Cloud
provider
API

Node

Node

kubelet

Node

kubelel

()

k-proxy

APl server

Cloud controller
manager
(optional)

Controller
manager

eted
(persistence store)

kubelet

kube-proxy

Scheduler

Control plane

Node

clolclcjoJ oo

_images/k8s-distributions.png
W 2019 W 2020

40%

30%

20%

10%

0%
On-prem DockerKubemetes kind (Kubemetes Cloud Provider Don'tuse
Kubemetes. in Docker) Managed Kubemetes during
Installation Kubemetes local development

Other (please: Don'trun

containers during

‘specify)
development
(e.9-use Docker
Compose)

_images/python-sphinx.png
@Scleorg e

e e e
NumPy Reference

o sl o, e, At e o, s et i £ g
iyt

Ttk O Crtrts

Provis opic
St
Nt

_images/sldc-documentation.png
Documentation through the SDLC

Traditional
. . T Support,
- Detailed design specification operations,
Total o user docs
Effort .
Detailed requirements 1
e specification /
1
) . '
- Detailed project plan v Agile

A

\

System
overview doc

High-level plan,
_ requirements, architecture

Time

Based on illustrations by Scott W. Ambler

_images/licences.png
Licence
Apache License

BSD License

Eclipse Public License
FreeBSD

GNU General Public License
GNU Lesser General Public License
Mozilla Public License

Python Software Foundation License
XCore Open Source License

Linking
Permissive
Permissive
Permissive
Permissive

GPLV3 compatible only
with restrictions

Permissive.
Permissive.
Permissive

Distribution
Permissive
Permissive
copylefted
Permissive
copylefted
copylefted
copylefted
Permissive

Permissive

[dliEiion, [P EiEEn Fofie 2] SEEEg |

Permissive
Permissive
copylefted
Permissive
copylefted
copylefted
copylefted
Permissive
Permissive

Yes
Manually
Yes
Manually
Yes
Yes

Yes
Yes
Yes

Permissive.
Yes
Yes
Yes

Permissive.

Permissive
Permissive
copylefted
Permissive
copylefted
copylefted
copylefted
Permissive
Permissive

_images/netflix.png
o0ss @) roweren Y

Our Team

NETFLIX Oss

1fyou are looking to have a large impact a a growing company and

work with a high performance team - tart here. Work with talented

colleagues on hard problems that affect milions of customers.

At Neti we value high performance,freedom and responsiitty. We

ort o onni, procesesapoccurn Wo r cani andy

ransparent and seck excellence in everything that we do.

We tackle problems others have not been able o solve. We fcense:

great content, build systems at scale and use data to push the

zerotodocker business forward. We connect people with movies and television
globally

Check out our jobs page for current openings.

ocoe

Netflix

_images/software-testing.png
TYPES OF SOFTWARE TESTING

6&8 InterviewBit

_images/travis-leak.png
et
PAGER=cat.

TRAVIS_CPU_ARCH=and64

TRAVIS_0SX_tMAGE=

SYSTEMDRIVE=C:

USERPROFILE=C: \Users\travis

PATHEXT=..CON; . EXE; .BAT; .CHD; .VBS; .VBE; .JS; . JSE; .WSF .WSH; .MSC; .RB; .RBW; .CPL
ANST_CLEAR-NG33[0K

SYSTEMROOT=C:\Windows

TRAVIS_APP_HOST=build. travis-ci.con

ANST_RED=\033[31;18

PROCESSOR_IDENTIFIER=Intel64 Family 6 Model 85 Stepping 7, GenuineIntel
TRV 6709253 -307a-4741-9434-720a75bT 1efh
PWD=/c/Users/travis/build/sci-visus/Openvisus

HOME=/c/users/travis

=/tup.

TRAVIS_BUILD_WEB_URL=Nttps://app. travis-c1.Con/sci-visus/0penvisus/builds/ 244257145
TRAVIS_ALLOW_FATLURE=False

DEBIAN_FRONTEND=noninteractive

_images/software-quality.png
T‘ﬂe OMLY VAL meAsuge men—
OF Cede Quaciry: WTFs/mivure

ey
R T

Wi F L s, 15

S S

B

(©)2008 Focus Shift

Goodk code . BAd codle.

‘with the kind prmission of Thom Holwerds.
Tty e osnews com story 19266/ W T

_static/file.png

_images/vulnerabilities.png
ERRERRER

MITRE CWE 5025010 OwAsPTop 10
(Occasonally) (Frequently) (va-mm (Frequently)

_static/minus.png

_static/p